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Abstract – マテリアルディスプレイは実物体を用いることで，解像度やダイナミックレンジなどの制
約を緩和し，現実に近い質感提示を可能にする．特に質感提示の重要な要素として，物体表面の立体構造で
あるテクスチャが挙げられる．従来手法では，回転スクリーンに実素材を配置し，そこへプロジェクタから
光を投影することで，現実に忠実なテクスチャを提示した．しかし，同手法で提示されるテクスチャは，ス
クリーン上に配置した実素材そのものであるため，提示可能なテクスチャの種類は回転スクリーンに配置し
た実素材に限定される．そこで本稿では，回転スクリーン上に基底となる素材を配置し，視覚の持続性を用
いて重ね合わせることで，少数の素材から複数のテクスチャを提示するマテリアルディスプレイの実現を試
みる．このとき，プロジェクタからバイナリ形式のマスク画像を投影することで少数の素材を重ね合わせる．
本手法の実現に向けて，テクスチャ特徴量に基づき，提示目標となる複数のテクスチャ画像から少数の基底
画像とマスク画像を取得する基底分解手法を提案する．さらに，より多くのテクスチャ提示のための追加最
適化によるデノイズ手法とテクスチャ生成モデルを用いた提示目標の最適化手法を提案する．最後に，テク
スチャ生成モデルを用いて連続的に変化するテクスチャ提示手法を提案する．
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1 はじめに
現実の物体は，光沢や色，表面構造など，様々な視

覚的質感を持つ．そのため，視覚的な質感を正確に再

現し，提示する技術は，プロダクトデザインにおける

完成イメージの共有などの応用が期待できる．また，

幅広い応用を可能にするためには，長時間の観察でも

疲労が生じにくく，特別な装置の装着を必要としない

ことが重要な要件である．本稿では，特に物体表面の

立体構造であるテクスチャに注目する．

高精度な質感提示を行う研究はこれまでに幅広く行

われており，その中の一つとしてマテリアルディスプ

レイがある．マテリアルディスプレイは，実物体を用

いることで，解像度やダイナミックレンジなどの制約

を緩和し，現実に近い質感提示を行う．その中でも，

回転スクリーンに実物体を配置し，回転運動に同期し

てプロジェクタからパターン光を照射することでテク

スチャ提示を行うディスプレイが提案された [1]．同

ディスプレイでは，プロジェクタから高速にパターン

光を投影することで視覚刺激が消失した後も一定時間

の間，視覚情報が残る視覚の持続性を利用し，提示像

におけるテクスチャの空間的な分布を動的に変更する

ことができる．しかし，同システムで提示できるテク

スチャは，スクリーン上に配置した実素材そのもので

ある．そのため，回転スクリーンに配置していないテ

クスチャを提示することは困難である．

そこで，本稿では回転スクリーン上に基底となる素
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材を配置し，視覚の持続性を用いてそれらを重ね合

わせることで少数の素材から複数のテクスチャを提示

するマテリアルディスプレイの実現を試みる．具体的

には，回転スクリーン上の基底となる素材に対してプ

ロジェクタからバイナリ形式のマスク画像を投影する

ことで，回転スクリーン上の素材を空間的に重ね合わ

せる．

本稿では，回転スクリーンに配置する基底素材およ

びマスク画像を求めるためにテクスチャ特徴量を用い

る．テクスチャ特徴量とは，テクスチャ画像における

統計的特徴を数値化する指標である．同一のテクス

チャ特徴量を持つ画像間では，画素値としては異なる

画像でも同じカテゴリのテクスチャと知覚される．そ

のため，実物体を用いて特定のテクスチャそのものを

提示するのではなく，そのテクスチャ特徴量を満たす

外観を再現することで，スクリーン上に配置した素材

数に制限されず多くのテクスチャを提示できる可能性

がある．

本ディスプレイの実現に向けて，四つの手法を提案

する．まず，テクスチャ特徴量を用いて提示目標のテ

クスチャ画像から回転スクリーンに配置する基底素材

とマスク画像を取得する基底分解手法を提案する．一

方，提案する基底分解手法では，テクスチャ同士の組

み合わせやテクスチャ数によってノイズやテクスチャ

の崩れが生じる課題がある．そこで，ノイズ低減のた

めの追加最適化手法を提案する．

さらに，基底分解を行う前段階で提示目標とするテ
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クスチャ画像の特徴を近づけることで，テクスチャの

崩れを低減する手法を提案する．そのために，本稿で

はテクスチャ画像が持つ多様な外観を統一的に扱う手

法であるテクスチャ生成モデルに着目する．テクスチャ

生成モデルは，大量のテクスチャ画像を学習すること

で，共通の潜在空間を獲得し，一つのモデルから多様

なテクスチャを生成する手法である．その中でも，色

や光沢とともに表面構造を含めて表現する Spatially

Varying Bidirectional Reflectance Distribution Func-

tion (SVBRDF)を対象とした生成モデルがある [2]．

同テクスチャ生成モデルの潜在空間において，潜在ベ

クトルをテクスチャ特徴量に基づいて操作することで

異なるテクスチャ画像間の大域的な特徴を近づけるこ

とができる．本稿では，大域的な特徴を近づけたテク

スチャ画像を事前に作成し，基底分解を行うことでテ

クスチャの崩れを低減する．

また，デザイン検討や質感提示では，異なるテクス

チャを離散的に切り替えて比較するだけでなく，それ

らの間に位置する外観を連続的に確認したい場合があ

る．特に，表面の粗さや模様のスケールといったテク

スチャ属性が連続的に変化する過程を観察できれば，

素材外観の変化をより直感的に把握できる．テクス

チャ生成モデルでは，二つのテクスチャ画像に対応す

る潜在ベクトルから，その中間的な外観を持つテクス

チャ画像を生成することができる．そこで，本稿では

テクスチャ生成モデルを用いて，連続的に変化するテ

クスチャ提示手法を提案する．

実験では，シミュレーションによるテクスチャ再構

成を行い，少数の基底素材から複数のテクスチャ提示

が可能であることを確認した．また，テクスチャ生成

モデルを用いることで，連続的に変化するテクスチャ

提示が可能であることを確認した．

2 関連研究
2.1 微細なテクスチャ提示を行うディスプレイ

これまで，微細なテクスチャを提示する様々な手法

が提案されてきた．Nishiらは，投影対象に微小振動

を与え，プロジェクタから高速にパターン光を投影す

ることで，微細なテクスチャを提示する手法を提案し

た [3]．具体的には，振動する投影対象の奥行き位置と

同期してプロジェクタから分割したデプス画像を高速

に投影することでテクスチャを提示する．しかし，同

手法で提示されるテクスチャの水平解像度はプロジェ

クタの解像度に制限される．

また，回転スクリーンに実物体を配置し，プロジェ

クタから光を投影することで現実に忠実なテクスチャ

を提示するマテリアルディスプレイが提案された [1]．

同方式では，提示目標のテクスチャを持つ実素材を直

接スクリーンに配置するため，プロジェクタに起因す

る解像度やダイナミックレンジの制約を受けない．さ

らに，同システムを螺旋状のスクリーンを持つ Swept

Volume Displayと組み合わせることで立体的な形状

を提示する手法も提案されている [4]．しかし，同シス

テムで提示されるテクスチャは，スクリーン上に配置

した実素材そのものである．そのため，回転スクリー

ンに配置していないテクスチャを提示することは困難

である．

2.2 基底分解

複数の画像を，少数の画像の組み合わせによって表

現できる場合がある．基底分解とは，複数の画像を効

率よく表現するために必要となる少数の基底画像を取

得する手法である．基底分解の例として，主成分分析

(PCA) がある [5]．PCAは複数の入力画像をベクト

ルとして扱い，分散が最大となる直交軸を求めること

で，入力画像を少数の基底画像と係数の線形結合で表

現する手法である．一方，PCAにより得られる基底

画像や係数には負の値が含まれるため，実物体を用い

て質感提示を行うマテリアルディスプレイでの利用は

難しい．

上記の制約に対して，非負値行列因子分解 (NMF)

は，入力画像から非負値の基底画像と非負値の係数を

取得する手法である [6]．同手法は，非負値制約によ

り，各基底画像が加算的に入力画像を再構成するため，

視覚の持続性に基づく基底画像の重ね合わせに適して

いる．しかし，NMFは顔画像のような空間的に局所

的なパーツを基底として分解する傾向があり，画像全

体に均一な特徴を持つテクスチャ画像に対しては，適

切な基底を取得することが困難である [7]．

2.3 テクスチャ特徴量

テクスチャ特徴量はテクスチャ画像が持つ統計的性

質を数値化したものである．テクスチャ特徴量を用い

た研究分野の一つに，テクスチャ合成がある．テクス

チャ合成とは，あるテクスチャ画像の統計的性質を保

持したまま，視覚的には同一の新たなテクスチャ画像

を生成する手法である．その代表的なアプローチとし

て，目標画像と出力画像のテクスチャ特徴量の差が最

小となるように出力画像を更新することで目標画像と

同じカテゴリに属する別のテクスチャ画像を生成する

手法が知られている．

Zhouらは，テクスチャ画像をパッチに分割し，各

パッチをVGGネットワークに入力して得られた特徴

ベクトルをテクスチャ特徴量として扱う [8]．同手法

では，テクスチャ画像とランダムノイズ画像のテク

スチャ特徴量の差分を Guided Correspondence Loss

(GCLoss)とし，GCLossを最小化するようにランダ

ムノイズ画像を更新することでテクスチャ合成を行う．
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図 1 視覚の持続性を利用した複数のテクスチャ
提示．

Fig. 1 A method for displaying multiple tex-
tures using the persistence of vision.
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図 2 テクスチャ特徴量を用いた基底分解手法．
Fig. 2 Basis decomposition method using

texture features.

2.4 テクスチャ生成モデル

テクスチャ生成モデルは，大量のテクスチャ画像を学

習することで，テクスチャの外観を統一的に生成可能

な潜在空間を獲得し，一つのモデルから多様なテクス

チャを生成する手法である．特に，物体表面の反射特性

を記述する SVBRDFを扱うテクスチャ生成モデルの

一つとして，MaterialGANがある [2]．MaterialGAN

は，入力として与えられた撮影画像に対して，それを

再現する SVBRDFを推定することが可能である．具

体的には，潜在ベクトルから生成された SVBRDFに

基づくレンダリング画像と，入力との差が最小となる

ように潜在ベクトルを最適化することで，入力画像に

対応する SVBRDFを推定する．また，MaterialGAN

の潜在空間では，二つの潜在ベクトルを線形補間する

ことで，その中間的な外観を持つ SVBRDFを生成で

きる．

3 提案手法
3.1 視覚の持続性を用いたテクスチャ提示

本節では，回転スクリーンに配置した基底素材とマ

スク画像によりテクスチャ提示を行う手法を提案する．

図 1に示すように，回転スクリーンに配置した基底素

材に対して，プロジェクタからバイナリ形式のマスク

画像を投影する．このとき，スクリーン上に配置され

た少数の基底素材は視覚の持続性により空間的に重

なって知覚される．具体的には，視覚の時間分解能を

示す臨界融合周波数 (CFF)よりも高速にプロジェク

タからマスク画像を投影することで実現する．

3.2 テクスチャ特徴量を用いた基底分解手法

本稿では，テクスチャの凹凸をデプス画像，法線マッ

プ，陰影画像で表現し，図 2に示すように提示目標と

するテクスチャ画像からテクスチャ特徴量を用いてデ

プス形式の基底画像とマスク画像を取得する．その後，

基底画像を立体化し，基底素材を作成する．

以下では，デプス画像を例に，基底画像およびマス

ク画像による再構成の定式化について説明する．デプ

ス画像は，各画素が三次元空間内の奥行きを表す画像

である．まず，提示目標とするデプス形式のテクスチャ

画像の集合を V depth = [vdepth1 , vdepth2 , ..., vdepthN ]，基

底画像の集合を Hdepth = [hdepth
1 , hdepth

2 , ..., hdepth
n ]，

マスク画像の集合を W = [w1
1, w

1
2, ..., w

N
n ] と定義す

る．このとき，wi
k は i番目のテクスチャ画像を表現

するための基底画像 hdepth
k に対応するマスク画像，n,

N は基底画像および提示目標のテクスチャ画像の枚数

である．マスク画像はバイナリ形式であり，基底画像

に重ねられる．各画素において，マスク画像の画素値

が 1に対応する基底画像の画素が提示され，複数の基

底画像が空間的に組み合わさることでテクスチャ画像

を再構成する．そのため，基底画像とマスク画像から

なる再構成画像 Ṽ depth = [ṽdepth1 , ṽdepth2 , ..., ṽdepthN ]に

ついて，ṽdepthi は次式で定義される．

ṽdepthi =

n∑
k=1

wi
k ⊙ hdepth

k (1)

基底分解では，V depth と Ṽ depth のテクスチャ特徴

量の差分を計算し，その差分が最小となるように勾

配降下法により Hdepth とW を更新する．本稿では，

Zhouらが提案した GCLossをテクスチャ特徴量の評

価指標として用いる [8]．

基底画像を立体化する観点では，デプス画像のみを

用いることで基底素材を作成可能である．しかし，人

間が知覚するテクスチャの印象は奥行き情報だけでな

く，表面の傾きによる陰影の影響も大きい．そこで，

本稿ではデプス画像に加えて法線マップと陰影画像を

用い，GCLossで評価する．法線マップは，物体表面の

法線ベクトルを RGB成分で表現した画像であり，微

細な傾きを表現する．また，陰影画像はテクスチャの

凹凸によって生じる明暗の分布を表現した画像である．

まず，Ṽ depthの x，y方向の勾配を計算し，法線方向

を推定することで，再構成画像の法線マップ Ṽ normal

を生成する．次に，陰影画像の計算のために平行光の

照射方向を定義し，Ṽ normal との内積を計算すること

で，陰影画像 Ṽ shadeを作成する．同様の手順により，

提示目標に対しても V depth，V normalおよび V shadeを

用意する．

最後に，V depthと Ṽ depth，V normalと Ṽ normalおよ

び V shade と Ṽ shade の各画像に対して，GCLossを計

算し，その和を損失関数とする．したがって，GCLoss

を LGC とすると基底分解は以下の最適化問題として
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図 3 大域的な特徴は保持されたままテクスチャ
が変化する．

Fig. 3 Texture changes while global features
are preserved.

定式化される．

min
W,Hdepth

N∑
i=1

{LGC

(
vdepthi , ṽdepthi

)
+ LGC

(
vnormal
i , ṽnormal

i

)
+ LGC

(
vshadei , ṽshadei

)
} (2)

s.t. 0 ≤ Hdepth ≤ 1, W ∈ {0, 1} (3)

得られたデプス形式の基底画像は，画素値を高さと

して，立体形状へ変換することで基底素材を作成する．

本稿では，公開されているオンラインツール [9]を用

いて，基底画像を STL形式の立体モデルへ変換し，回

転スクリーンに配置可能な基底素材を作成する．

3.3 追加最適化によるデノイズ手法

基底分解によって得られる再構成画像では，マスク

画像にバイナリ制約を課していることに起因し，粒状

のノイズが生じる場合がある．そこで本節では，基底

分解における再構成画像に生じるノイズを低減するた

めの追加最適化手法を導入する．

まず，基底分解によって得られた再構成画像 Ṽ depth

に対してデノイズフィルタを適用し，高周波ノイズを

抑制した参照画像 Ṽ dn = [ṽdn1 , ṽdn2 , ..., ṽdnN ] を用意す

る．次に，Ṽ dnと Ṽ depthで，L2距離および SSIMを

計算し，その差が最小となるように Hdepth のみを最

適化する．そのため，最適化問題は以下の式で定式化

される．

min
Hdepth

N∑
i=1

{λ1

∥∥∥ṽdepthi − ṽdni

∥∥∥2
2

+ λ2

(
1− SSIM

(
ṽdepthi , ṽdni

))
} (4)

本稿では，デノイズフィルタとしてメディアンフィ

ルタを用い，λ1 = 0.2，λ2 = 0.8とした．

3.4 テクスチャ生成モデルを用いた提示目標の最

適化

上述の基底分解手法では，複数のテクスチャ画像を

少数の基底画像の組み合わせで再構成するため，提示

目標のテクスチャ画像間で特徴が大きく異なる場合，

再構成結果にテクスチャの崩れが生じることがある．

一方で，提示目標間の大域的な特徴が近い場合，各テ

図 4 上段: 提示目標．下段: 再構成画像．
Fig. 4 Top: Target images. Bottom: Recon-

structed images.

図 5 追加最適化を行った再構成画像．
Fig. 5 Reconstructed images after additional

optimization.

クスチャに共有する構造を同一の基底で再構成しやす

くなる．

そこで，提示目標とするテクスチャ画像の集合から

基準となるテクスチャ画像を選択し，MaterialGAN

[2]を用いて提示目標間の大域的な特徴を合わせる手

法を提案する．具体的には，提示目標とするテクス

チャ画像の集合 V normalから基準となるテクスチャ画

像 vnormal
s を選択し，vnormal

s に対応する潜在ベクトル

zs をそれ以外の各テクスチャ画像 vnormal
i (i ̸= s)に

向けて最適化を行う．ここで，MaterialGANの生成

器を G(·)とすると，ある潜在ベクトル z から生成さ

れる法線マップ vnormal は以下の式で表される．

vnormal = G(z) (5)

本稿では，GCLossを損失関数として用い，vnormal
i (i ̸=

s)に対して，次式で定義される最適化問題を解くこと

により zs を更新する．
min
zs

LGC

(
G(zs), v

normal
i

)
, ∀i ∈ {1, . . . , N} \ {s}

(6)

この最適化により，図3下段の右に示すようにvnormal
s

の大域的な特徴は初期状態からほぼ変化せず，局所的

なテクスチャの模様のみが変化した生成結果 vnormal
s,(i)

が得られる．これは，GCLossが局所的な統計量に基

づく指標であり，画像全体の大域的な特徴を強く拘束

しない性質を持つためである．最後に，vnormal
s,(i) におけ

る勾配を積分することでデプス画像を生成し，3.2節

と同様に陰影画像を作成することで提示目標を得る．

3.5 テクスチャ生成モデルを用いた連続的に変化

するテクスチャ提示手法

本節では，テクスチャ生成モデルを用いて，連続的に

変化するテクスチャ提示手法について説明する．具体
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図 6 上段: 大域的な特徴を合わせた提示目標．
下段: 再構成画像．

Fig. 6 Top: Target textures with aligned
global features. Bottom: Recon-
structed images.

的には，まず連続的に変化させたい二つのテクスチャ

画像 vnormal
0 および vnormal

1 を用意する．次に，3.4節

で述べた手法によりテクスチャ特徴量を用いて vnormal
0

を vnormal
1 に向けて最適化する．この最適化の過程で

は，図 3の下段に示すように vnormal
0 から vnormal

0,(1) の外

観へと徐々に変化する中間的な画像が得られる．本稿

では，あらかじめ用意した二つのテクスチャ画像と，

これらの最適化過程で得られる中間的な生成画像を提

示目標として基底分解を行うことで，連続的に変化す

るテクスチャを提示する．

4 実験
4.1 概要

本節では，提案手法の有効性を確認するために二つ

の実験を行う．一つ目の実験では，基底分解によって

求めた基底画像とマスク画像を用い，複数のテクス

チャの再構成結果を確認し，追加最適化およびテクス

チャ生成モデルを用いて大域的な特徴を合わせた結果

との比較を行う．加えて，基底画像を立体化した基底

素材を用い，Blenderによる 3DCG上での再構成結果

を確認する．

二つ目の実験では，テクスチャ生成モデルを用いる

ことで，連続的に変化するテクスチャ提示が可能であ

るかを検証する．この実験においても，画像上での再

構成結果と，Blenderによる 3DCG上での再構成結果

を確認する．

画像上での再構成では，基底画像とマスク画像を用

い，画素値の線形和によってテクスチャ画像を再構成

する．提示目標のテクスチャ画像，基底画像，および

マスク画像の解像度は 256× 256 pixelとした．なお，

提示目標および再構成結果の可視化には陰影画像を用

いた．実験で用いるデプス画像および法線マップは，

MatSynthデータセットから選択した [10]．一つ目の

実験では，提示目標として図 4に示す画像を用い，基

底画像は 2枚とした．二つ目の実験では，提示目標と

して図 9に示す画像を用い，基底画像は 4枚とした．

このとき，MaterialGANを用いて図 9の上段におけ

図 7 左: 図 5の赤枠で囲まれた領域．右: 図 6
の赤枠で囲まれた領域．

Fig. 7 Left: Region enclosed by the red box
in Fig.5. Right: Region enclosed by
the red box in Fig.6.

図 8 Blenderでの再構成結果．
Fig. 8 Reconstruction results in Blender.

る両端の画像から中間の 6枚の画像を作成した．

Blenderによるテクスチャの再構成では，3.2節で

説明した方法により作成した基底素材を用い，光源か

らマスク画像を投影する．その後，マスク画像が投影

された各基底素材をレンダリングし，得られたレンダ

リング画像を画像上で重ね合わせることでテクスチャ

を再構成する．

4.2 テクスチャ特徴量を用いた複数のテクスチャ

再構成

基底分解によって得られた基底画像とマスク画像か

ら再構成した結果を図 4に示す．図 4より，再構成画

像において，提示目標のテクスチャ画像に含まれる模

様を再現していることを確認できる．

次に，追加最適化によるデノイズを行った再構成結

果を図 5に示す．図 4と図 5を比較すると，再構成画

像中に見られた粒状のノイズが減少していることがわ

かる．

さらに，大域的特徴を合わせた提示目標を用いたと

きの再構成結果を図 6に示す．また，図 5および図 6

における左から二番目の再構成画像について，赤枠で

囲った領域を図 7に示す．図 7より，大域的な特徴を

合わせていない再構成結果では，テクスチャが潰れて

いる箇所がある．一方，大域的な特徴を合わせること

で，再構成画像に生じるテクスチャの崩れが低減して

いることを確認できる．

次に，Blenderによる再構成結果を図 8に示す．図

8より，提示目標のテクスチャの特徴を確認できる．

4.3 テクスチャ生成モデルを用いた連続的に変化

するテクスチャ提示

基底分解によって得られた基底画像とマスク画像か

ら再構成した結果を図 9 に示す．図 9 より，提示目

標のテクスチャを再現できており，斜め方向のテクス

チャが徐々に変化している様子が確認できる．
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図 9 上段: 連続的に変化する提示目標．下段: 再構成画像．
Fig. 9 Top: Continuously varying target textures. Bottom: Reconstructed

images.

図 10 Blenderでの再構成結果．
Fig. 10 Reconstruction results in Blender.

次に，Blenderによる再構成結果を図 10に示す．図

10より，図 9と同様の変化をしていることが確認で

きる．
5 考察

実験結果より，テクスチャ特徴量を用いることで，

少数の基底画像とマスク画像によって提示目標のテク

スチャ画像に含まれる特徴を再構成できることを確認

した．さらに，追加最適化およびテクスチャ生成モデ

ルを用いて大域的な特徴を合わせることで再構成画像

に生じるノイズやテクスチャの崩れを低減できること

を確認した．また，Blenderによる再構成結果にも提

示目標のテクスチャに含まれる特徴を確認した．しか

し，図 4，図 5，図 6および図 8では，再構成画像間

の特徴が近づき，提示目標と比較してテクスチャ間の

差異が識別しにくくなる傾向が見られた．このことか

ら，提示目標間のテクスチャ特徴量の差が再構成画像

間でも保持されるように基底分解を行うことで再構成

精度の向上が期待できる．

さらに，テクスチャ生成モデルを用いることで，連

続的に変化するテクスチャ提示が可能であることを確

認した．一方，本手法では二種類のテクスチャを用意

する必要がある．単一のテクスチャに対して表面の粗

さやスケールの変化を提示するためには，テキストを

用いてテクスチャの特徴を制御することが有効である

と考えられる．

6 まとめ
本稿では，回転スクリーン上に基底となる素材を配

置し，視覚の持続性を用いてそれらを重ね合わせるこ

とで少数の素材から複数のテクスチャ提示を行う手法

を提案した．さらに，本ディスプレイの実現に向けて，

四つの手法を提案した．実験より，少数の基底素材お

よびマスク画像から複数のテクスチャを再構成できる

ことを確認した．さらに，連続的に変化するテクスチャ

提示が可能であることを確認した．
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