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Abstract – 近年，MASt3R のような事前学習済み大規模画像事前学習モデルは，RGB画像対から
高密度 3D 点群と信頼度マップを同時に推定できる点から注目されている．一方，古典的な Non-Rigid
ICP (NR-ICP) は非剛体形状の位置合わせに広く用いられるが，初期位置のずれと外れ値に敏感で，局
所最適解に陥りやすい．本研究では，アニメーション付き 3Dシーンを複数視点・複数時刻からレンダリン
グした時系列の合成データを用いて，MASt3R が出力する点群をNR-ICPの入力として採用し，さらに
信頼度を損失重みに利用する有効性を検証する．

1 はじめに

3次元点群の位置合わせはロボティクスやコンピュー

タビジョンにおける基盤的課題の一つであり，物体や

シーンの形状復元，モーション解析等の応用事例にお

いて重要な役割を果たす. 特に剛体変換を仮定した

位置合わせで最も広く用いられているのが Iterative

Closest Point (ICP) [3] であり, 2つの点群間におけ

る最近傍対応と変換推定を交互に繰り返すことで, 点

群間の剛体整合を逐次的に最適化する. しかし，ICP

は対象が剛体形状を前提とするため，点群間に伸縮や

曲げなどの形状差が存在する時系列データや異なる

ポーズ間においては収束性と精度が著しく低下するた

め，対象点群の非剛体変換を許容する Non-Rigid ICP

(NR-ICP) が用いられる.

NR-ICPでは各点が自由に変形可能な変換モデルを

用いつつ、全体が滑らかに変形するよう正則化項を課

すことで位置合わせを行う.

Ambergら [1]は，隣接点間での局所剛性を保つAs-

Rigid-As-Possible（ARAP）正則化を用い, 局所な剛

体変形と，平行移動・回転・曲げを含む大域的な非剛

体変形を同時に推定することで，初期位置や欠損の影

響を受けにくいロバストな形状対応を実現した. さら

に,Bouazizら [4]は,外れ点の誤差を自動的に小さく

評価する誤差関数を導入し, 剛体位置合わせを外れ点

に頑健化した.

しかし，幾何学的類似性に基づいてのみ対応探索す

る従来手法では, 形状変形や視点差が大きい場合には

対応付けの不確かさが増し，誤対応が生じやすい.

このような対応精度の限界に対し，近年は，画像や

センサから得られる点群に対して対応の信頼度（不確

かさ）を付与し，外れ点除去や損失関数の重みとして

活用される [2, 8]．信頼度に基づいた対応点選択に
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よって, ロバスト性が向上する.

さらに近年, 深層学習を用いて画像から直接 3次元

情報を推定する手法が注目されている. DUSt3R は

未知のカメラ姿勢や内部パラメータを持つ複数画像

から,Transformer により各ピクセル対応の 3 次元点

（PointMap）と信頼度を同一座標系で推定する画期的

なモデルであり, 極端な視点変化に対しても高いロバ

スト性を示した [24]. しかしDUSt3R入力画像ペア間

の幾何的対応を明示的に扱わないため，その復元精度

には限界があった. そこで後継のMASt3R[13] では,

従来の幾何学的ヘッドに加えて画像特徴マッチング用

の新たなヘッドを導入し,密な特徴量マッチング損失

を組み込むことで対応精度を大幅に向上させている.

MASt3R は 3次元的な視点で画像間マッチングを行

うため,LoFTR[22]や SuperGlue[17]といった 2次元

ベースの手法を上回る性能を示し,ゼロショットでの

単眼距離推定など複数の 3次元タスクにも適用可能な

汎用性を備えている.

以上の背景を踏まえ，本研究はMASt3R から得ら

れる高品質な初期点群と,各点の信頼度を NR-ICPの

対応点誤差の重みとして組み込み，その有効性につい

て検証する.

2 関連研究

本節では，非剛体点群整合に関する代表的枠組みと

ロバスト化手法を概観し，学習モデルが出力する信頼

度の活用という観点から本研究の位置づけを述べる．

2.1 非剛体 3Dレジストレーションと変形モデル

非剛体レジストレーションは，形状が伸縮や局所変

形を含む状況で対応付けと変形場推定を同時に扱う必

要があり，剛体 ICPより難しい課題である．近年の体

系的整理として，Dengらのサーベイが手法群（変形

表現，最適化，ロバスト性，学習ベース等）を包括的

にまとめている [9]．
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古典的枠組みNR-ICP系では，最近傍対応に基づく

データ項と変形の滑らかさ・局所剛性を担保する正則化

項を反復最適化する枠組みが広く用いられる．ARAP

（As-Rigid-As-Possible）に基づく局所剛性の維持 [20]

や，変形グラフ（embedded deformation）による空間

変形表現 [21] は，代表的な設計であり，本研究もこの

系譜に従う．Liら [14]は，対応点と変形場に加えて対

応の信頼度（重み）も同時に推定し，部分重なり領域

を扱う枠組みを提示している.

2.2 外れ値・部分重なりへのロバスト化と高速化

外れ値や部分重なりは，最近傍対応に基づく ICP/NR-

ICPを局所解へ誘導しやすい．確率的定式化として，

点集合の整合をGMM当てはめとして扱い，コヒーレ

ント（滑らか）な変位場を仮定する Coherent Point

Drift (CPD) が知られる [15]．剛体 ICPの文脈でも，

部分重なり・外れ値に対してはトリミングに基づく

TrICPが提案されており [7]，局所構造の不確かさを

確率モデルとして取り込む一般化 ICP（GICP）[18]

も知られる．さらに ICPの推定結果の不確かさを共

分散として評価する研究もあり [6, 5]，重み付けやロ

バスト化と親和性が高い．Bouazizらは，外れ値の影

響を抑えるロバストな目的関数設計により ICPを頑

健化した [4]．さらに Jungらは，NR-ICPの線形解法

を「厳密に解き切らない」単ステップ更新と前処理に

より加速する枠組みを提案している [12]．学習ベース

の対応推定においても，対応集合の整合性や信頼度を

用いて外れ値を除去する研究が進んでいる．FCGFは

学習特徴に基づく対応付けを行い [8]，PointDSC は

対応集合の整合性に基づく外れ値除去により頑健な整

合を実現する [2]．

また，近年はロバスト誤差関数と最適化の設計によ

り，外れ値・部分重なりを扱いつつ高速化を図る研究

が進んでいる．Yaoらは，滑らかなロバスト推定量と

MM/準ニュートン型解法により高速な非剛体整合を

実現した [25, 26]．

2.3 画像からの点群推定と信頼度（不確かさ）の

活用

近年，画像から密な点群（PointMap）を推定し，同

時に信頼度（不確かさ）を出力する事前学習モデルが登

場している．DUSt3Rは 2枚画像から密な PointMap

を推定し [24]，後継の MASt3R は 3D に基づく画像

マッチングを強化することで対応精度を改善した [13]．

本研究はMASt3Rの信頼度を NR-ICPのデータ項に

統合した場合の効果を検証する．さらに動的・非剛体

シーンの再構成では，時刻間で幾何が一貫しない領域

が対応付けを不安定にすることが古くから指摘されて

いる．Newcombeら [16]や Innmannら [11]は，RGB-

D系列からの非剛体再構成・追跡を行い，時刻間対応

⼊⼒画像: Frame 70 Confidence Map MASt3R 出⼒点群

カメラ

スタジオ環境光

床

レンダリングシーン

図 1 MASt3R パイプラインの可視化例
左 か ら 入 力 マ ル チ ビュー 画 像
（Frame#70）, その入力画像に対応
する MASt3R が推定した信頼度マップ,
推定した点群に RGB テクスチャを転写
した可視化結果.低信頼度は背景や光沢領
域に集中しており，高信頼度点が主に被
写体表面を構成していることが分かる.

の難しさとロバストな制約設計の重要性を示した．ま

た Slavchevaら [19]は対応探索に依存しない定式化を

提案しており, Gaoら [10]も動的再構成を扱う．

また，VGGT[23] は，1 枚～多数枚（数百枚規模）

の画像から，カメラ内外部・深度・PointMap・3D点

トラックを単発推論するフィードフォワード型の統合

モデルである．VGGTは深度や PointMapに対する

不確かさ（不確実性）も推定できるため，点群整合に

おける重み付けへの応用可能性もある．一方で，本研

究は「MASt3R 点群＋信頼度」を NR-ICPに統合し

た場合の効果検証に焦点を当てるため，次節で述べる

理由によりMASt3R を採用する．

3 提案手法

本研究では，MASt3R から得られる点群と信頼度

マップを活用し，NR-ICPの精度と頑健性を向上させ

る手法を提案する．

3.1 点群と信頼度マップの出力内容

MASt3Rの幾何学ヘッドから出力される点群 (PointMap)

は, 入力画像上の各ピクセルに対応する 3次元点の集

合である. 画像 I1 に対してはサイズが H×Wの点群

X1 = {x1(u,v) ∈ R3 | u = 1, . . . , H, v = 1, . . . ,W}が
得られ，同様に画像 I2からX2が出力される．これら

の 3次元点は,モデル内部で選ばれた基準座標系（通常

は画像 I1のカメラ座標系）に表現されている. これに

よりX1, X2 を統合した 3次元点群を得る. 同時に出

力される信頼度マップC1,C2 は各点X1(u,v), X2(u,v)

に対して推定された信頼度を表すスカラー値である.

信頼度 Ci(u,v) ∈ [0, 1] は, モデルがその対応関係を

どの程度確信しているかを示す. 例えばテクスチャが
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乏しい領域や外れ値の可能性が高い点では低く, 特徴

が明瞭で対応関係が確実な点では高く出力される傾向

がある.

MASt3R の学習時においては, この信頼度に対し回

帰損失が課されており, モデル自体が対応点の不確か

さを自己教師ありで学習する. そのため, 信頼度マッ

プは対応点の品質評価として機能し, 後段の最適化に

おいて不確実な点の影響を制御する指標となるといえ

る (図 1).

3.2 NR-ICPの定式化

NR-ICPでは一般に, ソース点群X = {xi}とター
ゲット点群 Y = {yi} 間の対応付けに基づいて以下
のような損失関数 E を定義する. 本研究では，損失

関数として重み付き双方向 Chamfer 距離と ARAP

（As-Rigid-As-Possible）正則化の線形結合を用いる．

L = wChamLCham + wARAPLARAP. (1)

3.2.1 重み付き Chamfer距離

ソース点群 X = {xi}Ni=1 とターゲット点群 Y =

{yj}Mj=1 に対し，各点の信頼度を ŵi ∈ [0, 1] とした

とき，

LCham. =

∑N
i=1 ŵi d

2
(
T (xi),Y

)∑N
i=1 ŵi

+
1

M

M∑
j=1

d2
(
yj , T (X )

)
(2)

と定義する．ここで d2(p,Q) は最近傍点までの平方

ユークリッド距離であり，T (·) は Embedded Defor-

mation 変形場である．

3.2.2 ARAP 正則化

変形グラフの節点集合とエッジ集合に対し，局所的

な剛体変形を維持するための正則化項 LARAP を導入

する（詳細は [1]に準ずる）．

3.3 信頼度に基づく重み付け

本研究では，MASt3Rが出力する信頼度をNR-ICP

の重み ŵi として活用するために，以下の 3つのバリ

エーションを提案・比較する．なお，比較対象として

信頼度を用いない従来の NR-ICP（ŵi = 1）を w/o

conf とする．

(i) 信頼度重みのみ (conf)

MASt3R の生信頼度を正規化した値をそのまま

重みとして用いる．

ŵi =
C(ui)

max
k

C(uk) + ε

(ii) Mask＋信頼度重み（mask+conf）

信頼度が低い点は背景やオクルージョン領域で

ある可能性が高いため，閾値 τ 未満の点をマス

図 2 信頼度マスクの可視化例（τ = 0.3）緑は
conf ≥ 0.3 の高信頼点，赤は conf < 0.3
の低信頼点を示す.

Source Target

⼊⼒画像 Confidence

図 3 混合入力における信頼度（mixed conf）
の可視化．左は入力に用いたソースとター
ゲットの混合入力画像群. 右図において，
静的な胴体は高信頼（明），大きく動いた
四肢は低信頼（暗）となっており，動体領
域の検出が可能であることを示している．

ク（ŵi = 0）し，残りの点に対して信頼度重み

を適用する．図 2に示すように，低信頼点は主

に背景側に分布しており，マスクにより外れ点

の寄与を抑制できる．

(iii) Mask＋Mixed Conf（mask+mixed conf）

フレーム時刻の異なるターゲット画像群とソース

画像群を同一入力として混合してMASt3Rに与

える手法である．フレーム間で幾何が一貫しにく

い領域（四肢，衣服の揺れ等）では対応が不安定

になり，出力される信頼度が相対的に低下する傾

向がある．図 3 に，混合入力（Source+Target）

を与えた際の信頼度分布を示す．胴体など時刻

間で形状が一貫しやすい領域は高信頼となる一

方，腕・脚など大きく変形・移動する領域では信

頼度が低下していることが確認できる．この特

性を利用し，混合入力から得られる信頼度 ŵmix
i

の反転値

ŵinv
i = 1− ŵmix

i

を動体（大変形）スコアとして重みに用いる．こ

れにより，静的な領域よりも動的な領域の整合
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Normal ICP(w/o) Ours(mask+mixed conf)Target/Source

図 4 合成データにおける位置合わせ結果の比
較（青：ターゲット点群，赤：ソース点
群）．左：位置合わせ前の重ね合わせ（Tar-
get/Source）．中：信頼度を用いない通常
の ICP（w/o）による結果．右：提案手法
（mask+mixed conf）による結果．提案手
法では混合入力信頼度に基づく重み付けに
より外れ点の影響が抑制され，ターゲット
／ソースの重なりが改善している

を優先させることを意図する．

以降，式 (2)におけるソース側の重み ŵi は設定に

応じて次のように与える：(i) w/o conf：ŵi = 1，(ii)

mask+conf：Ci < τ の点を除外（ŵi = 0）し，それ

以外は信頼度に比例させる，(iii) mask+mixed conf：

混合入力の信頼度 Cmix
i に対して同様にマスクを適用

し，残りの点では反転重み 1− Cmix
i を用いる．

4 実験設定と結果

提案手法の有効性を検証するため，合成データと実

データの両方を用いて評価を行った．

4.1 合成データによる検証

Blenderを用いて作成した合成データを用いる. 高

解像度キャラクタモデルにボーンベース変形を付与

し，固定された 3視点下でレンダリング画像を生成し

た（図 1 ）.

得られた各フレーム画像毎にMASt3Rを適用し，点

群と信頼度を得た．ターゲットはFrame 0を用い，ソー

スにはFrame 70のMASt3R出力点群を用いた．比較

手法は，(i) w/o conf，(ii) mask+conf（τ = 0.3），

(iii) mask+mixed conf（τ = 0.3）の 3つである．

なお，conf は w/o conf と mask+conf の中間的挙動

を示したため，本稿では代表的な 3条件に絞って比較

した．パラメータはwCham = 300，wARAP = 30，反

復回数 300 で固定した．

図5に損失の推移を示す．mask+mixed conf（青）

は，w/o conf（赤）よりも初期反復から安定した誤

差減少を示し，従来の mask+conf（緑）と同等以上

の収束性能を確認した．また，可視化結果（図 4）に

おいても，ターゲット／ソース間の不一致領域が減少

し，特に大きく動いた部位の整合が改善する傾向が見

られた．これは，mixed conf が動的な領域を適切に

特定し，その領域の整合を重点的に行った結果である

図 5 合成データにおける相対総損失の推
移．赤：w/o conf，緑：mask+conf，青：
mask+mixed conf．Mixed conf を用いた
提案手法が安定した収束を示している．

Frame 0: target Frame 1: source

図 6 実データ実験における入力画像．

と考えられる．

4.2 実データによる検証

実環境における適用性を検証するため，iPhone 14

を用いて時系列で姿勢を変えた人物を撮影した．図 6

に示すような姿勢について，異なる 2 つの時刻（フ

レーム）においてそれぞれ 4枚ずつ違う角度から撮影

した画像を用いた．ターゲットをフレーム 0，ソース

をフレーム 1 とした．図 8に示すように実画像にお

いても，提案手法（mask+mixed conf）は背景ノイズ

や外れ点の寄与を抑制し，被写体周辺での青赤の重な

りが改善していることが確認できる．

5 結論と今後の課題

本研究では，MASt3R が画像ペアから推定する点

群と信頼度マップを活用し，非剛体 ICP における対

応点の重み付けと外れ値除去を行う手法を提案した．

合成データセットを用いた実験により，信頼度に基づ

く重み付けとマスク処理が NR-ICP の収束速度と最

終損失を改善することを示した．さらに，実データを
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Frame 0: target Frame 1: source target/source

図 7 実データ実験における MASt3R 推定点群
の可視化．左：Frame 0 をターゲット点
群（青），中央：Frame 1 をソース点群
（赤）として用いる．右：位置合わせ前の
target/source の重ね合わせ（青：target，
赤：source）を示す．

Normal ICP Ours(mask+ mixed conf)

図 8 実データにおける位置合わせ結果の比較
（青：ターゲット点群，赤：ソース点群）．
左：信頼度を用いない通常の ICP（w/o
conf）．中央：マスクと信頼度重みを用
いた場合（mask+conf）．右：提案手法
（mask+mixed conf）による結果．提案手
法では背景ノイズや外れ点の寄与が抑制さ
れ，被写体周辺での青赤の重なりが改善し
ている

用いた検証において，フレーム間の混合入力から得ら

れる信頼度（Mixed Conf）を動体スコアとして利用

する手法を提案し，非剛体領域の整合に有効である可

能性を示した．

今後は，MASt3R 出力点群への適切な前処理，実

スキャンデータやノイズを含む現実的なデータセット

での適用性評価などを進め，実用的な非剛体 3D整合

フレームワークとしての汎用性を高めることが望まれ

る．さらに，本手法を単眼カメラによる動画入力へ拡

張することも重要な課題である．時系列フレーム間の

整合性を活用することで，より簡便な撮影環境下での

高精度な非剛体 3D復元が期待される．
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