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Abstract – 多視点画像からシーンの 3次元形状とカメラ位置・姿勢を同時に推定する Structure from
Motion（SfM）や Simultaneous Localization and Mapping（SLAM）において，バンドル調整
（Bundle Adjustment; BA）は重要な役割を果たす．本研究では，この BAの収束性と幾何精度を，低
視差や純回転に近いカメラ運動といった悪条件下で安定させる手法を提案する．従来広く用いられている
再投影誤差に対する Schur補完を用いた非線形最適化問題には, 多くの場合 Levenberg–Marquardt法
（Schur–LM）が用いられる. しかし，低視差なカメラ配置においてはカメラの縮約方程式が悪条件化し，
相対姿勢や焦点距離の推定が不安定になる．その結果, 推定結果が破綻しやすいという問題を抱えている．
本研究では，BA における目的関数や線形化自体には手を加えず，各反復で「どのカメラをどの程度更新す
るか」を再設計することでこの問題に対処する．具体的には，回転整合度とエピポーラ平行移動分散といっ
た単純な幾何量に基づいて情報量の高いカメラをゲートとして選択し，その中の上位 K 台が張る部分空間
上で LMステップを解くGate-Guided CSS-LMを提案する．信頼領域法としての受理判定やダンピン
グ更新則は従来の LMと完全に互換であり，既存の Schur–LM実装の更新ループをそのまま置き換える
形で導入できる．実験では，PhoneSweepデータセットのような球面運動によって撮影された入力におい
て，提案法は標準的な Schur–LMや既存手法と比較して，更新するカメラ数を各反復で大幅に絞り込みな
がらも，相対姿勢指標と焦点距離誤差を改善することを確認した．
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1 はじめに

多視点画像からの 3次元再構成は，コンピュータビジ

ョンにおける主要な課題の一つであり，Structure from

Motion（SfM）やSimultaneous Localization and Map-

ping（SLAM）に代表される多くの枠組みが提案され

てきた．これらの技術は，バーチャルリアリティにおけ

る仮想環境の構築，拡張現実感における環境理解，ロ

ボットナビゲーション，新規視点画像生成，3Dモデリ

ングなど，幅広い応用の基盤となっている．代表的な

SfMおよびSLAMシステムとしては，COLMAP [29]，

ORB-SLAM2 [21]，PTAM [14]などが挙げられる．特

に，NeRF [19]や 3D Gaussian Splatting [13]などの

新規視点生成手法の多くでは，COLMAPによって得

られた高精度なカメラパラメータと 3D点群が前処理

として利用されている．バンドル調整（Bundle Ad-

justment; BA）は SfM や SLAM における 3 次元再

構成パイプラインにおいて，最終的な復元品質を決

定づける中心的な構成要素である．一方で，大規模な

事前学習により構築された DUSt3R [33]，MASt3R-

SfM [7]，VGGT [32]などの 3D Foundation Modelが

登場し，従来の SfMパイプラインを経ずに 3次元再

構成を実現するアプローチも提案されている．しかし
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ながら，これらの 3D Foundation Modelを用いた場

合においても，最適化による後処理としてのバンドル

調整（Bundle Adjustment; BA）は依然として有効で

あり，幾何精度の向上に大きく貢献している．

BAは，カメラパラメータ（焦点距離などの内部パ

ラメータと並進,回転からなる外部パラメータ）と 3

次元点を同時に最適化し，再投影誤差を最小化するこ

とで再構成を精緻化する処理である．大規模 BA に

関する既存研究は主に，数値安定性や計算効率の向上

を目的としており，Square Root BA[6]，Matrix-Free

Shared Intrinsics BA[27]，Power Bundle Adjustment

（PoBA）[34]などが提案されている．しかし，これら

の進展にもかかわらず，BA は低視差やほぼ純回転と

いった悪条件下では依然として脆弱である．特に外向

きの球面運動などでは，カメラ間の視差が極めて小さ

くなるため，Schur補完により得られたカメラ系（以

下，Schur縮約系）が悪条件化し，一般的な Schur–LM

による更新は全てのカメラを一度に更新しようとする

ため，受理されるまでに多くの試行が必要になる．そ

の結果として，再投影誤差の RMSEが減少する一方

で，相対姿勢推定や内部パラメータの精度が著しく低

下することが知られている．

本研究では，BA の目的関数や線形化の形式を変え

るのではなく，各反復における更新自由度の割り当て

方に着目する．提案手法では，幾何条件の良し悪しに
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おける評価ギャップ，すなわち最終的な再投影誤差は低

いにもかかわらず相対姿勢指標が悪化する状況に注目

する．具体的には，一般的な再投影誤差の目的関数と

Schur縮約系はそのまま維持しつつ，「どのカメラを」

「どの方向に」「どれだけ」更新するかを再設計するこ

とで，低視差シーンにおける相対姿勢指標を改善しつ

つ再投影誤差を最小化する．そこで，我々は更新を空間

的にも次元的にも局所化し，情報量の高いカメラ集合

とその良条件な方向にパラメータ更新ステップを集中

させる．この設計は，Square Root BAやMatrix-Free

Shared Intrinsics BA，PoBA法といった既存の数値

安定化・高速化の流れとは異なり標準的な Schur–LM

の処理の一部を修正する形で用いることができる．

提案手法は Gate-Guided CSS-LM と呼ばれる選択

的 LMであり，古典的な信頼領域法（Trust Region;

TR）の枠組で動作する．各反復において少数のカメラ

からなるゲートを固定し，その内部で Column Space

Search（CSS）による更新方向探索を行う．カメラブ

ロックは Schur補完から得られる予測減少量に基づい

てスコアリングされ，上位 K 台のカメラが更新され，

その更新量に基づいて 3次元点も更新される一方，そ

れ以外のカメラは固定される．ダンピングや受理判定

は標準 LMと同一であり，目的関数やヤコビアンの定

義，停止条件も変更しない．

本研究の貢献は以下の通りである．

• Gate-Guided CSS-LMの提案：再投影誤差に基

づく目的関数を変更することなく，幾何ゲート

と Schur縮約系における部分空間探索を組み合

わせることで，低視差シーンにおける最適化の

挙動を改善する手法を提案する．

• Schur縮約系の対角成分を用いたスコアリング

と標準 LMとの互換性：Schur縮約後の勾配と

ヘッセ行列の対角ブロックを用いて各カメラの更

新重要度を個別に評価し，標準的な LM法の受

理判定とダンピング制御を適用することで，既

存の最適化フレームワークとの完全な互換性を

実現する．

• 悪条件シーンにおける有効性の実証：PhoneSweep
データセットのような球面運動シーケンスにお

いて，更新パラメータ数を削減しつつ，従来手

法と比較して相対姿勢指標と焦点距離誤差を大

幅に改善できることを示す．

2 関連研究

バンドル調整（BA）は多視点画像からの点群の位

置とカメラ姿勢を復元する 3 次元復元における非線

形最適化処理であり，BAに関する総説論文は Triggs

ら [30]がある．また，疎行列対応のBAライブラリと

しては SBA [17]，g2o [15]，Ceres [1] などが広く用い

られている．本節では，BAに関する既存研究を，計

算効率向上と悪条件や初期値に対する計算安定性向上

という観点で整理し，さらに信頼領域法の枠組みにお

ける選択的 LM更新について述べる．

大規模なBA問題に対する効率化の取り組みとして，

BAL [2]，Multicore BA [36]，Out-of-Core BA [22]，

MegBA [26]，Stochastic BA [38] などが提案されて

いる．Square Root BA [6]やMatrix-Free Shared In-

trinsics BA [28]は，条件数の改善や単精度での安定

性向上を両立する手法として位置付けられる．

安定性志向の研究としては，Variable Projectionを

用いた Projective BA，pOSE，expOSE [8, 9, 11]，

Power BA，PoVar [34, 35]，確率的定式化に基づく

ProBA [5, 37]，初期値への依存を緩和した手法 [24]，

ロバスト損失を用いた BA [3] などが提案されている．

しかしながら，外向きの球面運動に代表される臨界

ケースについては依然として安定した推定が難しく，

臨界ケースに特化した手法が必要となる [31]．

BAでは，LMに基づく最適化処理が広く用いられ

ているが，その収束性に関する古典的な議論は Leven-

berg [16]，Marquardt [18]，Moré [20]などがあり，そ

の後の解析として Kanzowら [12]や Bergouら [4]が

ある．LMを体系的に整理したものとしては，Nocedal

とWright [23]がある．Column Space Search（CSS）

の考え方は Hydeら [10] に基づいており，本研究の

CSS-LM はこれを Schur 縮約系に適用し，信頼領域

LMの受理判定と組み合わせたものである．

3 CSS-BA：Gate-Guided CSS-LM

本研究では，Schur補完付きLevenberg–Marquardt

法（Schur–LM）において，Schur縮約された BAの

カメラパラメータに対して，LM の更新ステップに

おいて幾何ゲートを用いた勾配方向の部分空間探索

（Column Space Search; CSS）を組み合わせるGate-

Guided CSS-LMを提案する（図 1）．本節では，ま

ずBAの問題設定と Schur補完について述べ，次に情

報量の高いカメラ選択のための回転整合度（Rotation

Agreement; RA）とエピポーラ平行移動分散（Epipo-

lar Translation Dispersion; Epi）に基づくゲーティン

グ手法を説明する．最後に，CSSに基づく LM部分空

間更新について述べる．

3.1 バンドル調整と Schur補完

カメラパラメータを ci（i = 1, . . . ,M），3次元点

を pj ∈ R3（j = 1, . . . , N とし，その画像上の観測画

素を uij ∈ R2 とする．各 3次元点は投影関数 πを用

いて ûij = π(ci,pj)のように各カメラ画像上へ投影
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図 1 CSS-BA のアイデア．提案手法では，Schur 補完を用いた Levenberg–
Marquardt法（Schur–LM）におけるカメラパラメータの更新ステップに対
して，Column Space Search（CSS）を組み合わせる．勾配計算に用いるカ
メラブロックは，回転整合度（Rotation Agreement; RA）とエピポーラ平
行移動分散（Epipolar Translation Dispersion; Epi）に基づく幾何ゲートに
よって選択される．

される．観測画素と投影座標の再投影誤差は以下のよ

うに定義される．

rij(ci,pj) = uij − π(ci,pj) (1)

再投影誤差を用いてBAの目的関数は以下のように定

義される．

E(x) =
1

2

∑
i,j

∥rij(ci,pj)∥22 (2)

Levenberg–Marquardt法では，現在の推定値x = (c,p)

の周りでガウス–ニュートン近似ヘッセ行列H = J⊤WJ

と勾配 g = J⊤Wrを用い，以下のブロック正規方程

式を解く．ここで，J はヤコビアン行列，W は再投影

誤差の重み行列である．(
Hcc Hcp

Hpc Hpp

)(
∆c

∆p

)
= −

(
gc

gp

)
(3)

Schur補完により 3次元点成分∆pを消去し，以下

の Schur縮約系を解く．

H̃∆c = − g̃, (4)

H̃ = Hcc −HcpH
−1
pp Hpc, g̃ = gc −HcpH

−1
pp gp (5)

H̃ はカメラパラメータに関する Schur縮約ヘッセ行

列であり，g̃ は対応する勾配である．提案手法では，

このカメラ縮約系を直接扱うことで，カメラごとのブ

ロックに対して更新の重要度を定義する．

3.2 幾何条件に基づくカメラ選択

球面運動のような低視差条件下では，再投影誤差

が小さいにもかかわらず相対姿勢や焦点距離の誤差

が大きい解が存在し，多くのカメラが弱い拘束とな

ってしまうという問題がある．そこで，回転整合度

（Rotation Agreement; RA）とエピポーラ平行移動分

散（Epipolar Translation Dispersion; Epi）という単

純な幾何量に基づいてカメラ集合をゲートとして抽出

する．

RAは，あるカメラの姿勢が，共視関係にある近傍

カメラの姿勢とどの程度整合しているかを評価する指

標である．Epiは，ベースライン方向の分散を評価す

る指標であり，近傍カメラ間の並進ベクトルが同一直

線上に縮退していないかを判定する．RAが十分に大

きく，かつ，Epiが適度に分散しているカメラは近傍

カメラとの回転整合性が低く，かつ高パララックスな

基線方向が一貫しない可能性が高い．したがって本実

装では，これらを優先的に ゲートイン（更新対象）に

含め，最適化において集中的に更新する．提案手法で

は，この二つの指標に閾値を設け，条件を満たすカメ

ラのみを勾配算出のための候補集合 Cとして選択する．
3.3 CSS に基づく LM 部分空間更新

ゲートされたカメラ候補集合 Cに対して，Schur縮

約系の対角ブロック H̃bbと勾配ブロック g̃bを用い，各

カメラブロック b ∈ Cの LMダンピングを考慮した利

得スコアを以下のように算出する．

sb :=
1

2
g̃⊤
b

(
H̃bb + λDbb

)−1
g̃b (6)

ここで λ は LM のダンピング係数，Dbb は対角の正

則化行列である．このスコア sb は，カメラ bを単独

で更新した場合の目的関数の予測減少量に相当する．

提案手法では，候補集合 Cに含まれるカメラをこのス
コアの降順にソートし，上位 K 個のカメラを選択す

る．そして，選択されたカメラのパラメータのみを変
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数とする部分空間上で，ダンピング付き LMステップ

を解く．更新の実施判定は標準的な LMと同様に予測

減少と実際の減少の比により判定し，比に応じてダン

ピングを増減させる．

4 実験

球面運動によって撮影された画像データセットであ

るPhoneSweepデータセット [31]を用いて既存のBA

手法（標準的な LM 法（Normal-LM）, PoBA [34]）

と比較し，提案法である Gate-Guided CSS-LMが低

視差シーケンスにおける相対姿勢およびキャリブレー

ション精度を改善できるかを検証する.

4.1 評価指標

評価指標には，相対回転誤差（RRA），相対並進誤差

（RTA），Accuracy–Threshold曲線下面積（AUC@30），

および焦点距離誤差（AFE）を用いる. RRA/RTAは

カメラ対ごとの相対姿勢誤差を角度で評価し，AUC@30

は閾値を [0, 30◦]の範囲で掃引したAccuracyを面積と

して要約した指標である．AFEは真の焦点距離と推定

値の相対誤差であり，内部パラメータのキャリブレー

ション精度を表す. 初期値としては，一般的な SfM

である GLOMAP [25] によって得られたカメラパラ

メータと，球面運動に特化した SphericalSfMによる

初期化 [31]の 2種類を用いた. これらの初期値に対し

て，Schur縮約カメラ系の上で標準 LM，PoBA [34]，

CSS-LMを適用し，それぞれの相対姿勢指標と AFE

を比較する.

4.2 結果

表 1 に定量評価の結果を示す．GLOMAP 初期化

では CSS-LMが Normal-LMおよび PoBA と比較し

てRRA/RTAおよびAUC@30を大幅に改善し，特に

Nexus5XシーケンスにおいてAFEを二桁以上小さく

できることを確認した. SphericalSfM初期化において

も，CSS-LMはNormal-LMに対して一貫した改善を

示し，SphericalSfMでの共有内部パラメータと球面運

動仮定を用いた強いベースラインに近い性能を達成し

た. 図 2に，推定されたカメラパラメータの可視化結果

を示す．CSS-LMは GLOMAPおよび SphericalSfM

のいずれの初期化に対しても，カメラの向きと位置

をより正確に復元できていることがわかる．一方で，

Normal-LMや PoBAでは，カメラの向きが大きくず

れたり，カメラ位置が球面から大きく外れていること

が確認できる．このように，提案手法は低視差かつほ

ぼ球面状のカメラ運動に対して，球面制約なしに既存

手法と比較して相対姿勢推定精度と焦点距離の推定精

度を一貫して改善できることが示された．

5 結論と今後の課題

本稿では，低視差かつほぼ球面状のカメラ運動に

対して Gate-Guided CSS-LM を提案した．提案手法

は Schur 縮約されたカメラ系の上で動作し，RA お

よび Epi に基づく幾何学的ゲーティングと，予測減

少量に基づく上位 K カメラの部分空間更新を組み合

わせることで，悪条件な最適化問題を安定化させる．

PhoneSweep データセットを用いた実験により，提案

手法は既存の Schur–LM や PoBA と比較して，相対

姿勢推定精度と焦点距離の推定精度を一貫して改善で

きることを示した．今後の課題として，大規模問題へ

の適用が挙げられる．現在の実装では各反復で単一の

上位 K カメラ集合のみを更新しているが，より大規

模なシーンでは複数のカメラブロックを同時に更新す

る必要がある．その際，部分空間の次元増大に伴い密

行列ソルバの計算コストが増加するため，CSS部分空

間の構造を活かした反復解法やブロック前処理の導入

が求められる．また，PhoneSweep 以外のデータセッ

トでの検証や，不安定なカメラを優先する現在のゲー

ティング戦略に対し，幾何的に安定したカメラを優先

的に更新する戦略の比較検証，K およびゲーティン

グ閾値の適応的な設定についても検討が必要である
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