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Abstract — With the widespread adoption of open image generation models such as
Stable Diffusion and FLUX.1, fine-tuning approaches using custom datasets have gar-
nered significant attention. In this report, we implement and verify the architecture
and training process of Low-Rank Adaptation (LoRA) for FLUX.2 [dev], a large-scale
model with 32 billion parameters released in November 2025. To enable training on a
single NVIDIA A100 80GB GPU, we constructed a memory optimization method com-
bining CPU-Offload via PyTorch FSDP2 and Gradient Checkpointing. We validated our
implementation through an overfitting experiment using a single image and investigated
training trends using a high-quality dataset derived from HICO-DET. The results demon-
strated improvements in contrast and detail during the early stages of training, whereas
extended training tended to cause structural collapse in features such as hands and faces.
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