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Abstract – Metaverse has been attracting more and more attention because of its
potential for various use cases. In metaverse applications, the seamless integration of dig-
ital and physical worlds is vital for synchronizing information from one world to another.
One way to achieve this is to reconstruct 3D environmental maps every time, which is not
feasible due to computational complexity. In this paper, we propose a change detection
method, combined with object classification, designed for efficiently updating the exist-
ing 3D environmental map as little as possible. Despite its simplicity, the experiment
shows promising results with an object detector fine-tuned with data from the target
environment.
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1 Introduction

Metaverse is a term that describes the concept of

“beyond universe.” It is a 3D virtual environment

where virtual objects, including avatars that rep-

resent users, can interact with each other as well

as with the surrounding physical environment [1].

The metaverse’s idea of integrating virtual and phys-

ical worlds is common in Augmented Reality (AR)

and Virtual Reality (VR), or more generally, Mixed

Reality (MR). As multi-user online systems are in-

volved, metaverse is often considered to be the next-

generation Internet.

Because of its potential for a variety of use cases,

metaverse has been attracting more and more atten-

tion in the industry. For example, VRChat1, a so-

cial VR platform in which users can create their own

worlds, invite people to them, and interact with them

from all over the world, reports more than 25, 000

community created their worlds. In the domestic

market, cluster2 offers a similar platform. These

platforms are based on VR, which enables interac-

tions between users and virtual objects and thus does

not support interactions with physical environments.

To achieve the integration of virtual and physical

worlds, digital twins play an important role. Digital

twins are virtual replications of physical entities, en-
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abling data transmission between virtual and physi-

cal worlds [2]. These days, such 3D reconstructions

can be obtained easily thanks to low-cost depth sen-

sors (e.g., iPhone equipped with LiDAR). However,

constantly keeping up-to-date 3D reconstructions is

a challenging problem because reconstructing and

replacing the whole environment is computationally

expensive.

In this paper, we propose a change detection method,

combined with object classification, to update the

existing 3D environmental map as little as possible.

By detecting changes between the existing map and

newly captured images, the whole replacement could

be avoided. Besides, detected changes provide event

logs in the environment. Such information would be

helpful, for example, in surveillance video analysis.

Figure 1 depicts the overview of our change detec-

tion pipeline.

2 Related Works

2.1 3D Reconstruction

Sparse 3D reconstruction of an environment can

be obtained from RGB-D images once camera pa-

rameters at each frame have been determined. This

only involves simple matrix multiplication.

COLMAP [3, 4] is a widely used Structure-from-

Motion (SfM) system for 3D reconstruction from un-

ordered images. Its Multi-View Stereo (MVS) algo-

rithm reconstructs dense representation after sparse

reconstruction. Simultaneous Localization AndMap-
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Fig. 1: Overview of our change detection pipeline.

ping (SLAM), which solves the localization of a robot,

is another branch of techniques for 3D reconstruction

[5, 6]. We refer readers to [7] for comprehensive re-

views of recent Visual SLAM algorithms.

In addition to the reconstruction of the captured

views, a lot of work on novel-view synthesis has re-

cently been done [8, 9, 10]. Leveraging machine learn-

ing, these algorithms can provide scene renderings

from a specific point of view using images captured

from different points of view.

2.2 Object Detection

Object detection is a task to localize objects in im-

ages and classify them into certain categories, and it

has a long history from hand-crafted features-based

approaches such as the Viola-Jones algorithm [11],

Histogram of Oriented Gradients (HOG) detector

[12], and Deformable Part Model (DPM) [13] in the

1990s-2000s.

As deep neural networks started to surpass the per-

formance of hand-crafted approaches, deep learning

approaches have become mainstream since the 2010s.

There are mainly two types of recent object detectors

based on deep learning, two-stage detectors [14, 15]

and one-stage detectors [16, 17]. Two-stage detectors

first produce object proposals and then refine them

while classifying them at the same time. One-stage

detectors achieve this through a single pipeline.

2.3 Change Detection

Change detection aims to find the difference be-

tween two inputs, which are usually 2D images or

3D representations such as point clouds. Depending

on the context, it is referred to as anomaly detection

[18], discrepancy check [19], difference detection [20],

and so on.

When the detected target is classified, especially

in a pixel- or point-wise manner, it is referred to

as semantic change detection. CSCDNet and SS-

CDNet [21] are 2D semantic change detection net-

works that leverage existing datasets for weakly su-

pervised learning by dividing the task into change de-

tection and semantic extraction. Our previous work

on 3D semantic change detection [22] predicts se-

mantic changes between two point clouds. While it

does not require training, hyperparameters should be

carefully tuned due to the rule-based nature of the

algorithm.

3 Methods

Our change detection aims at detecting changes

between an existing map, which will be called ref-

erence map hereafter, and newly captured images.

The images are expected to be captured at differ-

ent times from the reference map so that there are

changes in the environment. We call the time the im-

ages are captured “current” in contrast to the “ref-
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erence” map.

Our change detection pipeline is as follows. First,

we build the reference map as a 3D mesh. Next,

with some changes in the same environment (e.g.,

removals of objects), we capture images. Then, an

object detection algorithm is applied to each frame of

both the images and the renderings of the reference

map from the same pose. Finally, comparing the

detection results of each frame of the images and the

renderings provides the change detection prediction.

3.1 Reference Map

It is worth noting that the reference map should be

a dense representation with textures as our pipeline

applies object detection to its rendering. As such,

we use 3D mesh for the reference map.

In this paper, the reference map is reconstructed

by Scaniverse3, an iOS App for textured 3D model

reconstruction for the sake of simplicity. Of course,

more sophisticated reconstructions, such as novel-

view synthesis [8, 9, 10], could provide more complete

renderings. We leave that for future work.

3.2 Current Map

As for the current environment, it is not necessary

to reconstruct 3D representations explicitly because

we directly apply object detection to captured im-

ages. However, there is still a need to track the ex-

trinsic parameters to render the reference map from

the same poses as the captured images.

For that purpose, we use ARKit, a framework for

AR applications in iOS. ARKit supports a variety

of computer vision functionalities, including motion

tracking and object capture. It also allows us to get

estimated intrinsic and extrinsic parameters at each

frame, which can be used to register the reference

and current maps.

3.3 Object Detection

For object detection, we use YOLOv84, the latest

version of YOLO [16, 23, 24, 25, 26, 27] at the time of

writing. The default configuration of YOLOv8 pre-

trained on COCO [28] supports 80 object categories.

However, they may not be suitable depending on the

dataset; some may never appear, or categories out-

side the pre-defined ones may appear in the target

environment. As another remark, the domain gap

must be considered for object detection on both the

captured and rendered images.

3https://scaniverse.com/
4https://github.com/ultralytics/ultralytics

Therefore, we fine-tune the model using a dataset

of captured and rendered images in the target envi-

ronment. The images are labeled with a few classes

that are likely to be in the environment. It should

be noted that the model fine-tuned this way may

overfit the target environment and lack generaliza-

tion performance. This, however, does not matter

because our goal in this paper is to propose a new

use case in metaverse applications and not to develop

general-purpose high-quality object detectors. Once

the model has been fine-tuned, it is applied to each

frame of the captured and rendered images.

3.4 Change Detection

Captured and rendered images, after object detec-

tion, have bounding boxes of the detected objects.

The change, either the removal or addition of ob-

jects, can be detected and classified by comparing

the bounding boxes.

Let bci (n) denote the i-th bounding box detected

in the n-th captured image. In the same way, we

define bri (n) for the n-th rendered image. It is re-

minded that the captured and rendered images are

aligned when they are about the same timestamp.

If bci (n) does not have any intersected bounding box

on the rendered image, it means the detected object

has been added. Similarly, if brj(n) does not have

any intersected bounding box on the captured im-

age, the detected object has been removed. When

bci (n) intersects brj(n), the object is likely to be still

there. Therefore, this case is regarded as no change.

In some situations, bci (n) and brj(n) may represent a

different object class, but we do not consider this in

this paper.

4 Results

We scan the corridor of a building with Scaniverse

and use it as the reference map (see Figure 2). The

reference map is compared with the current environ-

ment in which 2, 202 images are captured. Since the

changes are not annotated, we report representative

results.

4.1 Successful Cases

Figure 3 shows successful cases of the detection of

the addition of objects. When an object is added to

the environment, it is usually detected only in the

captured image if the object detection model per-

forms well enough. This can be verified in Figure

3.
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Fig. 2: Reference map (3D mesh).

Figure 4 shows successful cases of the detection

of the removal of objects. Similarly, the removed

object is expected to be detected only in the rendered

image, which is the case in Figure 4.

In both cases, the object labels are predicted cor-

rectly because the object detector is fine-tuned with

the data of the target environment.

4.2 Unsuccessful Cases

When the target object, which is under no change,

is far from the camera, it occupies only a small re-

gion in the captured and rendered image. In this

case, the object tends to be detected in either the

captured or the rendered image. This often causes

false positives, that is, the prediction that the object

is either removed or added despite no actual change,

as seen in Figure 5.

This could be alleviated by introducing a voting

strategy. The idea is to gather and take a vote from

the predictions for each frame instead of immediately

concluding from the prediction of a single one. Vot-

ing is also vital for the efficient update of metaverse

maps because, with information on which object has

been changed, the update can be as little as possible.

5 Conclusion

In this paper, we have presented a frame-wise change

detection algorithm designed for efficiently updat-

ing metaverse maps. In the experiment with the

fine-tuned object detector, change detection was re-

duced to comparing the existence of bounding boxes.

However, the frame-wise prediction was shown to be

prone to distant objects because of its nature.

In future work, updating metaverse maps using our

method could be considered. While updating 3D rep-

resentation is challenging, adding change information

in the map (e.g., placing signboards or markers at the

position of the change) can be done by simply unpro-

jecting the pixels of the bounding box onto the 3D

space. More extensive experiments on more environ-

ments should also be explored to study the algorithm

to make it more robust to more complex situations,

such as different instances of the same object being

densely close to each other.
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